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Abstract

A stochastic optimal control strategy for partially observable nonlinear quasi-Hamiltonian systems is proposed. The

optimal control force consists of two parts. The first part is determined by the conditions under which the stochastic

optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear

system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic

averaging method and stochastic dynamical programming principle to the completely observable linear control system.

The response of the optimally controlled quasi-Hamiltonian system is predicted by solving the averaged Fokker–

Planck–Kolmogorov equation associated with the optimally controlled completely observable linear system and solving

the Riccati equation for the estimate errors of system states. An example is given to illustrate the procedure and

effectiveness of the proposed control strategy.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic optimal control is a research subject of much significance since many actual control systems such
as those in engineering structures are subjected to random excitations and the system states are estimated from
the measurements with random noises [1]. For a long period of time, only the linear quadratic Gaussian
(LQG) control strategy was used in engineering applications. In recent years, several optimal control strategies
for stochastically excited nonlinear systems have been proposed [2–7]. In these studies, the states of the
controlled systems were assumed known exactly, i.e., the controlled systems are completely observable.
However, the system states are actually estimated from the measurements with random noises, i.e., the
controlled systems are partially observable. One basic approach to the stochastic optimal control of partially
observable systems is to convert the stochastic optimal control problem of a partially observable system into
that of a completely observable system using the separation principle [8–10] and then to solve the later
problem. For a partially observable linear system, the converted completely observable control system is of
finite dimension and it can be solved easily, e.g., by using LQG strategy. A nonlinear stochastic optimal
control strategy for partially observable linear systems was proposed recently by present authors [11] based on
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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the separation principle, stochastic averaging method and stochastic dynamical programming principle. For a
partially observable nonlinear system, the converted completely observable control system is usually of infinite
dimension and it can hardly be solved. A few years ago, Charalambous and Elliott [12,13] proved that if the
nonlinearities enter the dynamics of the unobservable states and the observations as gradients of potential
functions, then the partially observable nonlinear control system could be recast as a completely observable
linear control system of finite dimension.

The objective of the present paper is to propose a nonlinear stochastic optimal control strategy for partially
observable nonlinear quasi-Hamiltonian systems. The optimal control force is split into two parts. The first
part is combined with the nonlinear terms in the control system and observation so that they are the gradients
of some potential function and the control problem of the partially observable nonlinear control system is
converted into that of the completely observable linear control system. The second part is determined by using
our previously proposed nonlinear stochastic optimal control strategy based on the stochastic averaging
method and stochastic dynamical programming principle [5,6]. The responses of the optimally controlled
system are predicted by solving the averaged Fokker–Planck–Kolmogorov (FPK) equation associated with
the optimally controlled completely observable linear system and by solving the Riccati equation for
estimation errors. Finally, the proposed control strategy is applied to the nonlinear stochastic optimal control
of a partially observable Duffing oscillator subjected to Gaussian white noise excitation to illustrate the
procedure and effectiveness of the proposed control strategy.
2. Stochastic optimal control problem of partially observable nonlinear systems

Consider a controlled, stochastically excited and dissipated nonlinear Hamiltonian system governed by

_Q ¼
qH 0

qP
,

_P ¼ �
qH 0

qQ
� C00

qH 0

qP
þUþ K00WðtÞ, (1)

where Q and P are n-dimensional generalized displacement and momentum vectors, respectively;
H0 ¼ H0(Q,P) is unperturbed Hamiltonian; U ¼ U(Q,P) is n-dimensional feedback control force vector;
C0
0 ¼ C0

0(Q,P) is n� n-dimensional damping coefficient matrix; K0
0 ¼ K0

0(Q,P) is n�m-dimensional
stochastic excitation amplitude matrix; W(t) is m-dimensional Gaussian white noise vector in the sense of
Stratonovich with intensity matrix 2D. System (1) can be modeled as Stratonovich stochastic differential
equation and then converted into Itô stochastic differential equation by adding Wong–Zakai correction terms.
These terms can be split into two parts: one having the effect of modifying the conservative force vector and
another modifying the damping force vector. The first part can be combined with �qH0/qQ to form an overall
effective conservative vector �qH/qQ with modified Hamiltonian H ¼ H(Q,P) and with qH/qP ¼ qH0/qP.
The second part can be combined with �C0

0qH0/qP to constitute an effective damping force vector �C0qH/qP
with C0 ¼ C0(Q,P). With these accomplished, Eq. (1) can be rewritten as

dQ ¼
qH

qP
dt,

dP ¼ �
qH

qQ
� C0

qH

qP
þU

� �
dtþ K0 dBðtÞ, (2)

where B(t) is m-dimensional Wiener process vector and K0 ¼ K0(Q,P) is n�m-dimensional matrix with
2K0

0DK0
0T ¼ K0K0

T.
By letting X ¼ [QT,PT]T, Eq. (2) is rewritten as

dX ¼ ĀðXÞdtþ Ūdtþ C1 dBðtÞ, (3)
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where

ĀðXÞ ¼
qH=qP

�qH=qQ� C0qH=qP

" #
; Ū ¼

0

U

� �
; C1 ¼

0

K0

" #
. (4)

Suppose that system state X is estimated from the measurement with noises. The observation equation is of
the form

dY ¼ D̄ðXÞdtþ FŪdtþ C2 dBðtÞ þ C3 dB1ðtÞ, (5)

where Y is n1-dimensional observation vector; D̄ðXÞ is n1-dimensional function vector; B1(t) is m1-dimensional
Wiener process vector; F, C2 and C3 are n1� 2n, n1�m and n1�m1-dimensional constant matrices,
respectively. The objective of stochastic optimal control is to minimize a performance index

J ¼ E

Z T

0

LðX;UÞdtþCðXðTÞÞ
� �

(6a)

for finite time-interval control, or

J 0 ¼ lim
T!1

1

T

Z T

0

LðX;UÞdt (6b)

for semi-infinite time-interval ergodic control, where E{ � } denotes expectation operation; T is the terminal
time of control; L(X,U) is cost function, which is a continuous, differential and convex function of both X and
U; C(T) is terminal cost. Eqs. (3), (5) and (6a,b) constitute a stochastic optimal control problem of partially
observable stochastically excited and dissipated nonlinear Hamiltonian system. It consists of two coupled
problems of optimal filtering and optimal control.

To convert the stochastic optimal control problem of partially observable nonlinear system governed by
Eqs. (3), (5) and (6a,b) into one of completely observable linear system, control force Ū is first split
into Ū1 ¼ ½0;U

T
1 �

T and Ū2 ¼ ½0;U
T
2 �

T. Ū1 is combined with the uncontrolled system and observation so that
Eqs. (3) and (5) become

dX ¼ ½AXþGðXÞ�dtþ Ū2 dtþ C1 dBðtÞ, (7)

dY ¼ ½DXþ EðXÞ�dtþ FŪ2 dtþ C2 dBðtÞ þ C3 dB1ðtÞ, (8)

where A and D are 2n� 2n and n1� 2n-dimensional constant matrices, respectively,

A ¼

q2H̄ð0Þ
qQ qP

q2H̄ð0Þ

qP2

�
q2H̄ð0Þ

qQ2
�

q
qQ

C0ð0Þ
qH̄ð0Þ

qP

� �
�
q2H̄ð0Þ

qP qQ
�

q
qP

C0ð0Þ
qH̄ð0Þ

qP

� �
2
6664

3
7775,

GðXÞ ¼ ĀðXÞ þ Ū1 � AX; D ¼
q
qX
ðD̄ð0Þ þ FŪ1ð0ÞÞ; EðXÞ ¼ D̄ðXÞ þ FŪ1 �DX. (9)

Here, H̄ is the Hamiltonian modified by U1. Note that control system (7) and observation (8) contain
nonlinear terms G(X) and E(X), respectively. Correspondingly, performance index (6a,b) is modified as

J0 ¼ E

Z T

0

LðX;U2ÞdtþCðXðTÞÞ
� �

(10a)

for finite time-interval control, or

J 00 ¼ lim
T!1

1

T

Z T

0

LðX;U2Þdt (10b)

for semi-infinite time-interval ergodic control.
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3. Converted stochastic optimal control problem of completely observable linear systems

According to the separation principle [8–10], the stochastic optimal control problem of partially observable
system (7), (8) and (10a,b) can be converted into one of completely observable system governed by

dp ¼ K�p dtþ ðDX̂þ EÞTpC�1 dY�
X

i

q

qX̂ i

ðC1pC
T
2 ÞiC

�1 dY, (11)

pðX̂; 0jYÞ ¼ p0ðX̂jYÞ,

J1 ¼ E

Z T

0

dt

Z
X̂

LðX̂;U2ÞpðX̂; tjYÞdX̂þ

Z
X̂ðTÞ

CðX̂ÞpðX̂;T jYÞdX̂
� �

(12a)

for finite time-interval control, or

J1 ¼ lim
T!1

1

T

Z T

0

dt

Z
X̂

LðX̂;U2ÞpðX̂jYÞdX̂ (12b)

for semi-infinite time-interval ergodic control, where p ¼ pðX̂; tjYÞ is the unnormalized conditional probability
density of system state estimation X̂ for given observation Y(t), 0ptpt; C ¼ C2C

T
2 þ C3C

T
3 ; K* is the formal

adjoint of operator K defined by

Kc ¼
1

2
tr C1C

T
1

q2c

qX̂
2

� �
þ ðAX̂þGþ Ū2Þ

T qc

qX̂
(13)

in which c ¼ cðX̂Þ is an arbitrary function and tr( � ) denotes the trace of a square matrix. Eq. (11) is the so-
called Duncan–Mortensen–Zakai (DMZ) stochastic partial differential equation for p. Eqs. (11) and (12a,b)
constitute a stochastic optimal control problem of completely observable system. Usually, it is a very difficult
problem since it is of infinite dimension.

To make the converted stochastic optimal control problem of completely observable system of finite
dimension, according to Charalambous and Elliott [12,13], assume that initial system state X̂ð0Þ has the
following probability density:

p0ðX̂jYÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjr0j

p e�ðX̂�m0Þ
Tr�1

0
ðX̂�m0Þ=2 � efðX̂;0Þ, (14)

where m0 and r0 are constant vector and symmetric positive-definite matrix, respectively; and the nonlinear
terms in control system (7) and observation (8) have potential function fðX̂; tÞ, i.e.,

GðX̂Þ ¼ C1C
T
1

qfðX̂; tÞ

qX̂
; EðX̂Þ ¼ C2C

T
1

qfðX̂; tÞ

qX̂
(15)

in which fðX̂; tÞ satisfies the following partial differential equation

qf
qt
þ

1

2
tr C1C

T
1

q2f

qX̂
2

� �
þ

1

2
CT

1

qf

qX̂

				
				
2

þ ðAX̂þ Ū2Þ
T qf

qX̂
¼ 0. (16)

Then, by using the gauge transformation

~pðX̂; tjYÞ ¼ pðX̂; tjYÞ e�fðX̂;tÞ, (17)

DMZ Eq. (11) becomes

d ~p ¼ ~K
�
~p dtþ ðDX̂ÞT ~pC�1 dY�

X
i

q

qX̂i

ðC1 ~pC
T
2 Þi:C

�1 dY, (18)
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where ~K
�
is the formal adjoint of operator ~K defined by

~Kc ¼
1

2
tr C1C

T
1

q2c

qX̂
2

� �
þ ðAX̂þ Ū2Þ

T qc

qX̂
(19)

and the performance index (10a,b) becomes

~J1 ¼ E

Z T

0

dt

Z
X̂

LðX̂;U2Þ ~pðX̂; tjYÞ e
fðX̂;tÞ dX̂þ

Z
X̂ðTÞ

CðX̂Þ ~pðX̂;T jYÞefðX̂;TÞ dX̂
� �

(20a)

for finite time-interval control, or

~J
0

1 ¼ lim
T!1

1

T

Z T

0

dt

Z
X̂

LðX̂;U2Þ ~pðX̂jYÞ e
fðX̂Þ dX̂ (20b)

for semi-infinite time-interval ergodic control. It is seen from the comparison of Eqs. (18), (19) and Eqs. (11),
(13) that in the former equations the nonlinear terms G(X) and E(X) have been deleted. Thus,
Eqs. (18)–(20a,b) constitute a stochastic optimal control problem of completely observable linear system.

Furthermore, by using Eq. (9), Eqs. (15) and (16) can be rewritten as

qH̄

qQ̂
þ C0

qH̄

qP̂

� �
N

¼ �K0K
T
0

qf

qP̂
; ðD̄ðX̂Þ þ FŪ1ÞN ¼ C2K

T
0

qf

qP̂
, (21)

qf
qt
þ

1

2
tr K0K

T
0

q2f

qP̂
2

� �
þ

1

2
KT

0

qf

qP̂

				
				
2

þ
qH̄

qP̂

� �T qf

qQ̂
�

qH̄

qQ̂
þ C0

qH̄

qP̂

� �T

L

qf

qP̂
þUT

2

qf

qP̂
¼ 0, (22)

where ( � )N and ( � )L represent nonlinear and linear terms, respectively. For stationary potential fðX̂Þ, the first
term in Eq. (22) vanishes. Since Eqs. (18)–(20a,b) represent a stochastic optimal control problem of completely
observable linear system, they can be formulated equivalently as

dX̂ ¼ ðAX̂þ Ū2Þdtþ ðRCD
T þ C1C

T
2 ÞC

�1 dVI , (23)

dVI ¼ dY�DX̂dt, (24)

J2 ¼ E

Z T

0

L2ðX̂;U2ÞdtþC2ðX̂ðTÞÞ

� �
(25a)

for finite time-interval control, or

J 02 ¼ lim
T!1

1

T

Z T

0

L2ðX̂;U2Þdt (25b)

for semi-infinite time-interval ergodic control, where VI is n1-dimensional innovation process vector; RC is the
covariance matrix of state estimation error ~X ¼ X� X̂, which has Gaussian probability density

pð ~XÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞnjRC j
p e�

~X
T
R�1C

~X=2. (26)

Covariance RC satisfies the following differential Riccati equation:

_RC ¼ ARC þ RCA
T
� ðRCD

T þ C1C
T
2 ÞC

�1
ðDRC þ C2C

T
1 Þ þ C1C

T
1 (27a)

for finite time-interval control, or algebraic Riccati equation

ARC þ RCA
T
� ðRCD

T þ C1C
T
2 ÞC

�1
ðDRC þ C2C

T
1 Þ þ C1C

T
1 ¼ 0 (27b)

for semi-infinite time-interval ergodic control.
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4. Optimal control law

Let X̂ ¼ ½Q̂
T
; P̂

T
�T. Eqs. (23)–(25a,b) describe a stochastic optimal control problem of completely

observable, stochastically excited and dissipated linear Hamiltonian system with Hamiltonian Ĥ ¼ ĤðQ̂; P̂Þ. If
the dissipation, excitation intensity and control are of the same small order, then Eqs. (23)–(25a,b) constitute a
stochastic optimal control problem of quasi-linear Hamiltonian system and our previously proposed nonlinear
stochastic optimal control strategy for quasi-integrable Hamiltonian systems [5,6] can be applied to this
control problem. Specifically, by applying the stochastic averaging method [14] to system (23), the following
averaged Itô stochastic differential equations is obtained:

dĤ ¼ mðĤÞ þ
qĤ

qP̂

 !T

U2

* +2
4

3
5dtþ rðĤÞdB3ðtÞ, (28)

where Ĥ ¼ ½Ĥ1; Ĥ2; . . . ; Ĥn�
T and Ĥi is the ith modal energy of the controlled linear system; / �S denotes

averaging operation; B3(t) is standard Wiener process vector; mðĤÞ and rðĤÞ are, respectively, drift vector and
diffusion matrix with elements

miðĤÞ ¼ �
Xn

j;k¼1

c̄jk

qĤi

qP̂j

qĤ

qP̂k

þ

Z 0

�1

Xn1
k;l¼1

Xn

j¼1

X2n

r;s¼1

qĤj

qX̂ s

f sl

 !
tþt

q

qĤj

qĤi

qX̂ r

f rk

 !
t

"*

þ
qŷj

qX̂ s

f sl

 !
tþt

q

qŷj

qĤi

qX̂ r

f rk

 !
t

#
RklðtÞdt

+
, ð29Þ

si:ðĤÞsj:ðĤÞ ¼

Z 1
�1

Xn1
k;l¼1

X2n

r;s¼1

qĤj

qX̂ s

f sl

 !
tþt

qĤi

qX̂ r

f rk

 !
t

RklðtÞdt

* +
(30)

in which c̄jk is the damping coefficient dependent on A in Eq. (9); ŷj the generalized phase process; frk the
element of matrix ðRCD

T þ C1C
T
2 ÞC

�1; Rkl(t) the correlation function of VI(t). Eq. (28) implies that ĤðtÞ is a
controlled diffusion process vector. Correspondingly, performance index (25) is modified into

J3 ¼ E

Z T

0

L3ðĤ;U2Þ

D E
dtþC3ðĤðTÞÞ

� �
(31)

for finite time-interval control, or

J4 ¼ lim
T!1

1

T

Z T

0

L3ðĤ;U2Þ

D E
dt (32)

for semi-infinite time-interval ergodic control.
By applying the stochastic dynamical programming principle [15,16] to the control problem of averaged

system (28) and (31) or (32), a dynamical programming equation can be established. For performance
index (31), it is

qV1

qt
¼ �min

U2

L3ðĤ;U2Þ

D E
þ mðĤÞ þ

qĤ

qP̂

 !T

U2

* +2
4

3
5
T

qV1

qĤ

8<
:

þ
1

2
tr rðĤÞrTðĤÞ

q2V1

qĤ
2

� �9=
; ð33Þ
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and for performance index (32), it is

l ¼ min
U2

L3ðĤ;U2Þ

D E
þ mðĤÞ þ

qĤ

qP̂

 !T

U2

* +2
4

3
5
T

qV2

qĤ

8<
:

þ
1

2
tr rðĤÞrTðĤÞ

q2V 2

qĤ
2

� �9=
;. ð34Þ

In Eqs. (33) and (34), V1 and V2 are called the value function, and l is a constant representing optimal
average cost. The optimal control law is determined by minimizing the right-hand side of Eq. (33) or (34) with
respect to U2, i.e.,

qL3

qU2
þ

qĤ

qP̂

qV

qĤ
¼ 0. (35)

Let L3 be quadratic with respect to U2, i.e.,

L3ðĤ;U2Þ ¼ gðĤÞ þUT
2RU2, (36)

where g(Ĥ)X0; R is a symmetric positive-definite matrix. Then optimal control law is of the form

U�2 ¼ �
1

2
R�1

qĤ

qP̂

qV

qĤ
, (37)

which depends on the derivatives of value function V1 or V2 with respect to Ĥ. Substituting Eq. (37) into
Eq. (33) or (34) yields the following final dynamical programming equation:

qV

qt
þ

1

2
tr rrT q

2V

qĤ
2

� �
þmT qV

qĤ

�
1

4

qĤ

qP̂

qV

qĤ

 !T

R�1
qĤ

qP̂

qV

qĤ

* +
þ gðĤÞ ¼ 0 ð38Þ

in the case of finite time-interval control, or

1

2
tr rrT q

2V

qĤ
2

� �
þmT qV

qĤ

�
1

4

qĤ

qP̂

qV

qĤ

 !T

R�1
qĤ

qP̂

qV

qĤ

* +
þ gðĤÞ ¼ l ð39Þ

in the case of semi-infinite time-interval ergodic control. Since the diffusion matrix in Eq. (38) or (39) is non-
singular, Eq. (38) or (39) has a classical solution [16], i.e., continuous and smooth solution, which can be
obtained by using conventional numerical technique. Thus, the second part of stochastic optimal control
force, U�2, can be obtained by solving Eq. (38) or (39) and then by substituting the resultant qV=qĤ into
Eq. (37). The total optimal control force is then U*

¼ U1+U2
*.
5. Performance of proposed control strategy

To evaluate the performance of the proposed stochastic optimal control strategy for partially observable
nonlinear quasi-Hamiltonian systems, the response of the optimally controlled system is first predicted. The
response consists of optimally controlled response estimation X̂ and response estimation error ~X. The statistics
of X̂ is obtained as follows: substituting U2

* in Eq. (37) with solution qV=qĤ from Eq. (38) or (39) into
Eq. (28), and averaging the terms involving U2

* yield the following averaged Itô stochastic differential equation
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for optimally controlled system

dĤ ¼ m̄ðĤÞdtþ rðĤÞdB3ðtÞ, (40)

where

m̄ðĤÞ ¼ mðĤÞ þ
qĤ

qP̂

 !T

U�2

* +
. (41)

The FPK equation associated with Itô Eq. (40) is

qp

qt
¼ �

Xn

i¼1

q

qĤi

½m̄iðĤÞp�

þ
1

2

Xn

i;j¼1

q2

qĤiqĤj

Xn1
l¼1

silðĤÞsjlðĤÞp

" #
. ð42Þ

For semi-infinite time-interval ergodic control problem, a stationary solution to Eq. (42) can be obtained
as follows:

pðĤÞ ¼ Cpe�jðĤÞ, (43)

where Cp is a normalization constant and probability potential

jðĤÞ ¼
Z Ĥ

0

qj

qĤ

� �T

dĤ, (44a)

qj

qĤi

¼
Xn

j¼1

½rðĤÞrTðĤÞ��1ij

Xn

k¼1

q½rðĤÞrTðĤÞ�jk

qĤk

� 2m̄jðĤÞ

( )
(44b)

in which ½rðĤÞrTðĤÞ��1ij is the element of inverse matrix ½rðĤÞrTðĤÞ��1. The mean square values of estimated
generalized displacements and momenta of the optimally controlled system can be calculated as follows:

E½Q̂
2

i � ¼

Z 1
0

Q̂
2

i

D E
pðĤÞdĤ; E½P̂

2

i � ¼

Z 1
0

P̂
2

i

D E
pðĤÞdĤ. (45)

The mean square values of the errors of estimated generalized displacements and momenta can be obtained
from solving Riccati Eq. (27a,b) for RC, i.e.,

E½ ~Q
2

i � ¼ ðRCÞii; E½ ~P
2

i � ¼ ðRCÞnþi;nþi. (46)

Thus, the mean square generalized displacements and momenta of the optimally controlled system are

E½Q2
i � ¼ E½Q̂

2

i � þ E½ ~Q
2

i �; E½P2
i � ¼ E½P̂

2

i � þ E½ ~P
2

i �. (47)

The mean Hamiltonian E[HC] of the optimally controlled system can be obtained from E½Q2
i � and E½P2

i �.
The mean Hamiltonian E[HUC] of the uncontrolled system can be obtained by applying the stochastic
averaging method for quasi-Hamiltonian systems [14] directly to Eq. (2) without control force U if the
dissipation and stochastic excitation are weak. The first criterion for evaluating the effectiveness of the
presently proposed control strategy is defined as the percentage reduction in mean Hamiltonian, i.e.,

K1 ¼
E½HUC � � E½HC �

E½HUC �
� 100%. (48)

For further examine the performance of the proposed control strategy, Eqs. (3) and (6a,b) are treated as a
stochastic optimal control problem of completely observable system. Then our previously proposed nonlinear
stochastic optimal control strategy for completely observable quasi-Hamiltonian systems can be applied to
evaluate the mean Hamiltonian E[HF]. In this case, the total mean Hamiltonian E[HUF] is E[HF] plus the
contribution from measurement error. Thus, the second criterion for evaluating the effectiveness of the
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proposed control strategy is defined as the percentage reduction in mean Hamiltonian:

K2 ¼
E½HUF � � E½HC �

E½HUF �
� 100%. (49)

Higher values of K1 and K2 imply better effectiveness of the proposed control strategy.
6. Example

As an example for the application of the proposed stochastic optimal control strategy, consider the
stochastic optimal control of a partially observable Duffing oscillator under stochastic excitation governed by

€X 1 þ c _X 1 þ aX 1 þ bX 3
1 ¼ exðtÞ þ u, (50)

where X1 is displacement; c, a and b are constants representing damping coefficient, linear stiffness and
nonlinear intensity, respectively; e is excitation amplitude; x(t) is a Gaussian white noise with unit intensity; u

is feedback control force. Assume that c, e2 and u are of the same small order. Letting X1 ¼ Q and _X 1 ¼ P,
Eq. (50) is rewritten as

dX ¼ ĀðXÞdtþ Ūdtþ C1dBðtÞ, (51)

where B(t) is unit Wiener process and

X ¼
Q

P

� �
; Ā ¼

P

�aQ� bQ3 � cP

" #
; Ū ¼

0

u

� �
; C1 ¼

0

e

� �
. (52)

Suppose that the system velocity is observed with noise. The observation equation is

_Y ¼ _X 1 þ e1x1ðtÞ, (53)

where Y is the observation, e1 the amplitude of observation error, x1(t) the Gaussian white noise with unit
intensity independent of x(t). Eq. (53) can be rewritten as the following Itô stochastic differential equation:

dY ¼ Pdtþ e1 dB1ðtÞ, (54)

where B1(t) is unit Wiener process independent of B(t). For ergodic control, the performance index is

J ¼ lim
T!1

1

T

Z T

0

LðQ;P; uÞdt. (55)

Eqs. (51), (54) and (55) constitute a stochastic optimal control problem of partially observable nonlinear
quasi-Hamiltonian system. Note that only control system contains nonlinear terms.

Split control force u into u1 and u2. u1 satisfies the first equation of Eq. (21) and Eq. (22), i.e.,

u1 � bQ̂
3
¼ e2

qf

qP̂
, (56)

qf
qt
þ

e2

2

q2f

qP̂
2
þ

e2

2

qf

qP̂

� �2

þ ðu2 � aQ̂� cP̂Þ
qf

qP̂
þ P̂

qf

qQ̂
¼ 0, (57)

where Q̂ and P̂ are the estimations of Q and P, respectively. One solution to Eqs. (56) and (57) is f ¼ 0 and
u1 ¼ bQ̂

3
. It is seen from Eqs. (51) and (52) that in this case u1 plays the role of feedback linearization. Then,

the stochastic optimal control problem of partially observable nonlinear quasi-Hamiltonian system is
converted into the following stochastic optimal control problem of completely observable linear system

dQ̂ ¼ P̂dtþ ðRC12=e21ÞdV I , (58a)

dP̂ ¼ ð�aQ̂� cP̂þ u2Þdtþ RC22=e21

 �

dV I , (58b)
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J2 ¼ lim
T!1

1

T

Z T

0

L2ðQ̂; P̂; u2Þdt, (59)

where RC12 and RC22 are the elements of covariance matrix RC for estimation errors ~Q and ~P. The stationary
covariance matrix RC is obtained from solving the following algebraic Riccati equation:

ARC þ RCA
T
� RCE2RC=e21 þ e2E2 ¼ 0, (60)

where

A ¼
0 1

�a �c

� �
; E2 ¼

0 0

0 1

� �
. (61)

By applying the stochastic averaging method to Eq. (58a,b), the following averaged Itô equation for the
estimated Hamiltonian of the optimally controlled linear system is derived:

dĤ ¼ mðĤÞ þ P̂u2

� � �
dtþ sðĤÞdB3ðtÞ, (62)

where Ĥ ¼ P̂
2
=2þ aQ̂

2
=2; the drift and diffusion coefficients are

mðĤÞ ¼
1

2e21
aR2

C12 þ R2
C22


 �
� cĤ,

s2ðĤÞ ¼
1

e21
aR2

C12 þ R2
C22


 �
Ĥ. ð63Þ

For ergodic control problem with performance index (32), the dynamical programming equation is

min
u2

L3ðĤ; u2Þ
� 

þ mðĤÞ þ P̂u2

� � � qV

qĤ

�

þ
1

2
s2ðĤÞ

q2V

qĤ
2

�
¼ l. ð64Þ

Let

L3ðĤ ; u2Þ ¼ gðĤÞ þ Ru22; gðĤÞ ¼ s0 þ s1Ĥ þ s2Ĥ
2
. (65)

The optimal control law for u2 is obtained from minimizing the left-hand side of Eq. (64) with respect to u2
as follows:

u�2 ¼ �
1

2R

qV

qĤ
P̂. (66)

Substituting Eq. (66) into Eq. (64) to replace u2 yields the final dynamical programming equation

1

2
s2ðĤÞ

q2V

qĤ
2
þmðĤÞ

qV

qĤ
�

Ĥ

4R

qV

qĤ

� �2

þ gðĤÞ ¼ l. (67)

The optimal control force component u�2 is obtained from solving Eq. (67) and then substituting the resultant
qV=qĤ into Eq. (66). The total optimal control force is then

u� ¼ u1 þ u�2 ¼ bX̂
3

1 �
1

2R

qV

qĤ
_̂X 1. (68)

The response of the optimally controlled system can be predicted by solving the FPK equation associated
with averaged Itô Eq. (62) as described in the last section. The response of the uncontrolled system is obtained
by applying the stochastic averaging method to Eq. (51) without control force u. Then the first performance
criterion K1 can be evaluated according to Eq. (48). E[HUF] can be obtained by treating Eqs. (51) and (55) as a
stochastic optimal control problem of completely observable quasi-Hamiltonian system, by applying our
previously proposed nonlinear stochastic optimal control strategy for completely observable quasi-
Hamiltonian systems [5,6] and by adding the contribution from observation error. Thus, the second
performance criterion K2 can be evaluated according to Eq. (49). Note that in calculating E[HC] both the
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effects of estimation error on u1 and u2 are taken into account. If u1 is taken without considering this effect,
then mean Hamiltonian E[HSF] will be less than E[HC]. This leads to the following third performance
criterion:

K3 ¼
E½HC � � E½HSF �

E½HC �
� 100%. (69)

For parameter values c ¼ 0.1, b/a ¼ 0.16, s0 ¼ s2 ¼ 0, some numerical results for K1, K2 and K3 as functions
of e/e1 or e1/e are shown in Figs. 1–4. It is seen from Fig. 1 that the proposed control strategy is very effective
even for large observation noise. It is also seen from Fig. 1 that as the ratio of excitation intensity to
observation noise increases, e.g., e/e145, K1 approaches a constant, the value of which depends on s1/R. Fig. 2
shows that K2 is small only e1/e-0. This implies that the proposed control strategy has good filtering-control
effectiveness and the original control problem can be treated as a stochastic optimal control problem of
completely observable system only when observation noise is very small. Figs. 3 and 4 indicate that the
observation noise has significant effect on u1 when e1/e, R/s1 and nonlinearity are large. This effect has been
taken into account in the proposed control strategy.
7. Conclusions

In the present paper, a stochastic optimal control strategy for partially observable nonlinear quasi-
Hamiltonian systems has been proposed. The control force consists of two parts. The first part is used to
convert the original control problem into that of completely observable linear quasi-Hamiltonian system and
is determined by the condition that the combinations of it and nonlinear terms in system and observation
equations are the gradients of some potential function. The second part is used to reduce the response of
converted controlled system and is determined by using our previously proposed nonlinear stochastic optimal
control strategy for completely observable quasi-Hamiltonian systems. It has been shown through applying
the proposed control strategy to a partially observable Duffing oscillator under stochastic excitation that the
proposed control strategy is very effective even for large observation noise and strong nonlinearity.
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